
CHEP03 March 24-28 2003 La Jolla California 1

PSN: TUKT010

A ROOT/IO Based Software Framework for CMS
William Tanenbaum
FNAL, Batavia, IL 60510, USA

The implementation of persistency in the Compact Muon Solenoid (CMS) Software Framework uses the core I/O functionality
of ROOT. We will discuss the current ROOT/IO implementation, its evolution from the prior Objectivity/DB‘
implementation, and the plans and ongoing work for the conversion to “POOL”, provided by the LHC Computing Grid (LCG)
persistency project.

1. INTRODUCTION
 The CMS experiment [1] is one of the four approved

LHC experiments. Data taking is scheduled to begin
in 2007, and will last at least ten years. The CMS
software and computing task [2] will be 10-1000 times
larger than that of current HEP experiments. Therefore
it is essential that software must be modular, flexible,
and maintainable as well as providing high
performance and quality.

One of the technologies utilized has been a C++
based object oriented database management system
(ODBMS). Originally, the specific implementation
used for object persistency was a commercial product,
Objectivity/DB [3]. In 2001, it became apparent that
Objectivity was not the optimal long term solution for
data persistency, and that it was necessary to abandon
Objectivity with a very short time scale. A decision
was made to directly use ROOT/IO [4] as a component
of an interim persistency implementation. In the very
near future, the LHC computing grid persistency
project will provide POOL [5] as an implementation for
persistency.

This paper primarily covers the conversion from
Objectivity/DB to ROOT/IO. Also briefly discussed is
the ongoing transition to POOL.

2. ROOT/IO BASED COBRA
The CMS Software Framework (COBRA), formerly

called the CMS Analysis and Reconstruction
Framework (CARF), is described in detail elsewhere
[6]. This paper deals only with the low level
(technology dependent) persistency storage
management aspects of COBRA. A higher level
discussion of the CMS approach to persistency can be
found elsewhere [7]. Suffice it to say that
communication with the persistent data store is handled
by COBRA rather than explicitly by user written
simulation, reconstruction, or analysis packages.

2.1. General Design of ROOT/IO COBRA
A decision was made to minimize the dependence of

COBRA on the persistency implementation details. As
a result, standard STL container classes (e.g.
std::vector, std::string) are used throughout rather than
ROOT specific classes (e.g., TClonesArray, TString).
Also, the use of the ClassDef() macro is kept to an

absolute minimum. The only optional ROOT specific
class that is used is TRef, the ROOT class supporting
references to persistent objects.

For simplicity, it was decided at this stage to use
ROOT/IO for all persistent data, including metadata.
This greatly standardized and simplified the
conversion. Also, for simplicity, ROOT/IO folders,
trees and branches are not used.

2.2. Objectivity/DB to ROOT Conversion
As mentioned above, the original version of COBRA

used Objectivity/DB as its implementation of persistent
objects. Many Objectivity specific features (e.g.
namescopes) were used extensively throughout
COBRA. So pervasive was the influence of Objectivity
that it was decided that it was not feasible to redesign
COBRA to stop using every Objectivity specific feature
in the short time available to us. Rather, where
necessary, an Objectivity specific feature would be
emulated with ROOT/IO. In essence, an Objectivity
emulator is implemented for those Objectivity
capabilities that could not easily be removed or
replaced.

Below, we discuss the mappings from
Objectivity/DB to ROOT/IO.

2.2.1. The Federated Database
An Objectivity Federated Database (a.k.a. federation)

(class ooFDObj) is a collection of user defined
databases and the associated schema.

No specific ROOT/IO analogue of a federation is
used. The absence of a file catalog or similar structure
to tie together ROOT files is acceptable for the interim
ROOT solution. The POOL file catalog will provide
this capability in the future.

2.2.2. Objectivity databases
A ROOT/IO file (class TFile) is used in place of each

Objectivity database (class ooDBObj), with a 1-1
correspondence between them.

2.2.3. Objectivity containers
A ROOT/IO directory (class TDirectory) is used in

place of each Objectivity container (class ooContObj).
2.2.4. Objectivity objects

A ROOT/IO named object (class TNamed) is used in
place of each Objectivity persistent object (class
ooObj). Although Objectivity objects are unnamed, it is
necessary to name ROOT/IO objects to support
persistent references. As the names need be unique only
within a container, it was decided to use human-

FERMILAB-Conf-03/484-CD August 2004

CHEP03 March 24-28 2003 La Jolla California 2

PSN: TUKT010

readable mnemonic names for the objects rather than
machine generated unique object identifiers. This made
it easier to use ROOT interactively to examine a file.

2.2.5. Objectivity vectors and iterators
STL vectors and iterators are used respectively in

place of each Objectivity persistent vector (class
ooVArray<T>) and each Objectivity iterator (class
ooItr(T)).

2.2.6. Objectivity namescopes
Each Objectivity object or container has its own

name space in which any other object or container may
be given a unique name. Objectivity calls these name
spaces “namescopes”. Objectivity supports
bidirectional access to namescopes, i.e. a name can be
accessed either through the scoping object or the named
object. In COBRA with ROOT/IO, persistent objects
that need to support namescopes do not inherit directly
from TNamed. Rather, they inherit indirectly through
an intermediate class that contains an STL map and an
STL multimap containing the bidirectional namescope
information. In order to support namescopes for
containers, each container contains a keyed
“namescope” object containing the map and multimap.

2.2.7. Objectivity persistent references
Objectivity supports references to persistent objects,

containers, or databases (class ooRef(T)). These
references are used to locate a persistent object in
memory or to retrieve it from the persistent store if it is
not in memory. ROOT uses the TRef class to support
references to persistent objects. However, a TRef can
only be used to uniquely identify an object in memory.
A TRef does not provide the capability to locate an
object in the persistent store.

In order to provide a reference that can uniquely
identify and retrieve an object in memory or in the
persistent store, COBRA defines a persistent class that
contains a TRef and also the names of the ROOT/IO
file, container, and object in the persistent store. This is
why named objects (class TNamed) are used.

2.2.8. Objectivity transactions
ROOT/IO does not support atomic transactions.

However, COBRA with ROOT/IO mimics transactions
by keeping a record of all objects to be written, and
writing them out at definite user-defined intervals. In
addition, a small “master” collection object is the last
object to be written at each interval. If a crash or other
interruption occurs prior to the writing of the master
object, other written or partially written objects will be
overwritten when the run is resumed. Hence the
window of vulnerability is limited to the interval during
the writing of the master record.

2.3. Scale of conversion effort
The conversion effort was done by a single

developer, new to COBRA, over a five month period,
two months for coding and three months for developer
debugging and testing.

2.4. Performance
The ROOT/IO framework typically uses about half

the disk space of the Objectivity based framework. The
default ROOT compression level (level 1) is used.
Considering that CMS data will be on the order of
petabytes, this is a huge improvement.

There is an increase of a few percent in the running
time of event digitization production jobs due mainly to
the overhead of data compression.

3. POOL BASED COBRA
There are several deficiencies to the current

ROOT/IO based COBRA. The most important of these
is the absence of a file catalog, making large-scale
production difficult. Other deficiencies include the lack
of a cache manager, and the ad-hoc solution to the
problem of references to persistent objects. POOL [5]
solves all of these problems, as well as decoupling
COBRA from any specific persistency technology. The
conversion of COBRA to POOL is currently in
progress.

Acknowledgments
The author wishes to thank Vincenzo Innocente for

his help in understanding COBRA, Rene Brun, Philippe
Canal, Masaharu Goto, and Fons Rademakers for their
prompt resolution of ROOT issues, Walter Brown for
his C++ expertise, and Veronique Lefebure for her skill
in finding bugs in the ROOT/IO based framework.

Work supported by the U. S. Department of Energy.

References
[1] CMS-The Compact Muon Solenoid, Technical

Proposal CERN/LHCC 94-38, LHCC/P1, CERN
1994.

[2] The Compact Muon Solenoid, Computing
Technical Proposal CERN/LHC 96-45, CERN
1996.

[3] Objectivity website http://www.objectivity.com
[4] ROOT website-http://root.cern.ch
[5] POOL website-

http://lcgapp.cern.ch/project/persist. See also the
presentations of D. Duellmann, M. Frank, and Z.
Xie at this conference.

[6] V. Innocente, CMS Software Architecture:
Software framework, services, and persistency in
high level trigger reconstruction and analysis
CMS/IN 1999-034

[7] V. Innocente, An ODBMS approach to
persistency in CMS. Proceedings of CHEP
2000, pp 423-430.

